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A CRITIQUE AND AN APPRAISAL OF VLSI MODELS OF COMPUTATION
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Abstract

In this paper we evaluate various proposed VLSI models of computa-

tion. While there is consensus on the appraisal of chip area, controversy

remains with regard to computation time. Thus we have analyzed in detail

the propagation of signals on dispersive lines. The results are expressed

in terms of adimensional parameters characteristic of any given fabrica-

tion technology. The conclusion is that both current and projected silicon

technologies fall within the realm of the capacitive model, where a dis-

persive line can be replaced by a capacitance proportional to its length.

*, Diffusion phenomena appear therefore to exceed the present VLSI horizon.
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A CRITIQUE AND AN APPRAISAL OF VLSI MODELS OF COMPUTATION

U
1. Introduction

The central question in the design and analysis of algorithms is the

definition of the model of computation to be adopted. Indeed, "performance"

becomes meaningful only in relation to a given model. This model is

normally the simplified abstraction of a class of real or imaginary machines;

for example, the RAM or Random-Access-Machine, is the model of practically

the totality of existing (Von Neumann type) processors. The model of

computation is the simplest possible, compatibly with the requirement of

being realistic. In other words, while a model aims at capturing the

essential traits of a system or technology, its simplicity is what enables

theoretical appraisals of performance. /

Very-Large-Scale-Integration (VLSI), as a computing environment, is no

exception. Indeed considerable attention has been paid [ 1 ][ 2 ] [ 3 ] [ 4 ]

to the definition of a suitable model. The basic parameters of any VLSI

computation model are chip area A and computation time T. VLSI systems

display a trade-off between these two parameters, each of which represents

a well-defined cost aspect: chip area is a measure of fabrication cost and

computation time is a measure of operating cost.

A general feature of all proposed - and presumably of all future - VLSI

models of computation is that a chip is viewed as a computation graph,

whose vertices are called nodes and whose arcs are called wires. Nodes are,

by and large, devices and are responsible for information processing (com-

putations of boolean functions); wires are just electrical connections,and

are x'esponsible for both transfer of information and distribution of power
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1supply and timing waveforms.
A given computation graph is to be laid-out in conformity with the

rules dictated by technology. These rules are geometric constraints on

admissible layouts and typically concern widths of wires and transistor

regions, clearances between wires, transistors, etc., number of metallic

layers, permissible orientations, etc.. Once a layout - that is, a legal

planar embedding of the computation graph - has been produced, the chip

area A is normally the area of the smallest rectangle inscribing the lay-

out, and is the sum of the areas of wires, transistors, and, possibly, of

some wasted space. More formally we have:

Area Assumptions

Al. (Wire area) All wires have minimum width X > 0 (which includes both

the actual wire width and the clearance between wire and any other chip

region) and al. most v - 2 wires can overlap at any point (hypothesis of

bounded number of layers). [Ali models.]

2A2. (Transistor-port area) Transistors and I/0 ports have minimum area>X,2

[All models.]

A2.1 Transistors and I/O ports have fixed area c T and clP%

respectively, for constants cT and cp [Brent-Kung [ 2]; Chazelle-

Monier [ 4]].

A2.2 The chip is subdivided into compact regions, called "self-timed";

within a self-timed region A2.1 holds, while drivers of inter-

region wires have area proportional to the wire-length [Thompson

31; Seitz [ 51].

A3. (Chip area) The chip area A is at least the sum of the area of the

wires, of the transistors, and of the 1/0 ports, and it is at most the

area of the smallest rectangle (or convex region) enclosing a legal

layout of the graph. [All models.]



These rules are quite simple and uncontroversial. Indeed no difficulty arises

in appraising the area of a given computation graph.

Radically different - as to a consensus among researchers - is the

situation regarding the computation time T. To acquire the necessary

perspective, let us call "an elementary action" the change of output of a

transistor and the transmission of this change on the wires connected to this

output. Thus, given a computation graph - which supports a prescribed

* algorithm - the designer can describe the execution of the algorithm as a

sequence of sets of elementary actions. In other words, execution is con-

veniently modeled by a single-source/single-destination (corresponding to

* begin and end, respectively) directed acyclic graph, whose arcs correspond

to elementary actions. Each arc is weighted with the time taken by the

*" action it represents. This knowledge, in principle, seems quite adequate

* for the evaluation of T, by simply taking the value of the most time-con-

suming source-de.cination path in the acyclic graph. The difficulty lies,

however, in the assignment of values to the arc weights. Indeed, the

proposed computational models basically differ in this weight assignment.

More formally we have:

Time Assumptions

Tl. (Propagation time along a wire).

Tl.l A bit requires a constant time T to propagate along a wire,

irrespectively of its length. (Brent-Kung). (We refer to this

case as the synchronous model.)

TI.2 A bit requires a time O(log2) to propagate along a wire of iength

I (Mead-Conway; Thompson). (We refer to this case as the

* capacitive model.)
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2* T1.3 A bit requires a time O(A ) to propagate along a wire of length

£ (Seitz; Chazelle-Monier). (We refer to this case as the

diffusion model.)

T2. (Algorithm time) The computation time of an algorithm is the time of

the longest sequence of wire propagation times between beginning and

completion of the computation. [All models.]

The choices for Tl reflect the profound controversy on VLSI computation

time. In a preliminary analysis, one is tempted to conclude that Tl.! is

the most realistic choice. Indeed, a wire is characterized by a resistance

and a capacitance which (in a given fabrication technique) both grow

linearly with the wire length; therefore, the time constant of the transistor

2load grows proportionally to I , whence the conclusion T1.3. Notice that

the computational implications of TI.3 - as noted by Chazelle-Monier in

[4] - are drastic. Indeed, chip wires of substantially different lengths

are ruled out and connections must exist only between devices in very close

proximity. As a consequence, the only permissible computation graphs are

of the mesh type (or closely related), which rules out very fast parallelU
computation, such as performed by computing structures of the type of the

shuffle-exchange [ 6 ], the cube-connected-cycles [ 7], or the tree-connected

machine [ B].

Asymptotically, the line of arguments sketched above is unimpeachable,

and therefore - for the theoretician of algorithmics - valid, since

asymptotic analysis is the cornerstone of concrete computational complexity.

However, the asymptotics of VLSI have a much closer horizon than, for

example, the asymptotics of the Turing machine. This horizon, in fact, is

~ set by realistic ucunds on the expectations - in the current technology -

of minimum feature size and maximum chip size.

S
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Within this horizon, the line parameters must be weighed against the1.
nonnegligible output impedance of the driving transistor and the input

* limpedance of the driven transistor. To appraise this interaction, it is

(% therefore appropriate to take a critical look at the actual physical

phenomena occurring during an "elementary action".

2. A mathematical model of wire switching

Perhaps the most characteristic feature of present-day VLSI technology

is the fact that, irrespective of the choice of the devices (MOS-FET versus

bipolar, for example) wires are realized as dispersive lines. This nature

of wires is what determines the time behavior of networks (and must be

reflected in the computation model) and the choice of devices, or of their

operating regimes, has a nonessential effect on it. Therefore, with

reference to dispersive line VLSI technology, any reasonable device selection

is representative of the general problem.

In particular, we shall carry out our analysis with reference to the

CMOS technology [ 9]. In figure la we have illustrated the circuit being

considered. T is an n-channel MOS transistor, initially cut-off. Its

drain load - that is the wire AB and the gate capacitance of the driven

transistor T2 - is initially charged to voltage V0 . So, with reference to

(IDS,VDS) characteristic curves of figure Ib, P1 is the initial operating

point of T . At t =0 a step voltage vg = V0 is applied at Lhe gate of TI;

after a time T0 - negligible with respect to the other intervening times -

* the current I0 corresponding to vg = V0 is established and the operating

point moves to P,. From this point on, the operating point moves on the

v g V0 curve towards the origin and the transistor load discharges through

the channel. It is our objective to analyze this phenomenon.

I,
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R IDS
A B I0 P 2 v =. V0

A B

(a)

VDS
Figure 1. The CMOS configuration and the transistor characteristics.

i D) ___ID

1 0

R I(X't) C

0 I

(a) (b) VPO V0  VDS

Figure 2. The model (a) and the idealized characteristics.

The circuit is modeled as in figure 2a, where C is the gate

capacitance of T2 and the line, of length 2, has resistance r and capacitance

c per unit of length. Transistor TI is modeled as a (variable) resistor

Rol to reflect the shape of the v = V0 characteristic curve. In particu-g

*: lar, we approximate the latter as in figure 2b with two straight line

segments, meeting at the pinch-off voltage VPO; the saturated regime

is modeled by a horizontal segment starting at (VDSDS) - (V0 ,10 ), while

the so-called ohmic regime is modeled by a segment passing through the origin. We

shall now study the general discharge regime, and later specialize it to

the two regimes defined above.

*



2.1 General solution.

Let v(x,t) and i(x,t) denote the values of the line voltage and

current at abscissa x and time t, respectively. From Ohm's law and the

definition of capacitance we obtain

a v _- i av
x -ri, T- -c Tt

whence

2 2.2v v 52i _ i
= rc2 - rc-. ()bx 2  ax 2  at

These are instances of the classical diffusion equation (or heat equation),

which has been assiduously studied over the past century. It seem natural

to suspect that we are dealing with a standard textbook problem. However,

our boundary conditions deserve special attention.

3 We assume that the initial conditions be provided by

v(x,O) = vo(x), x E [0,21 (2)

(or, alternatively, i(x,O) = i0 (x)) where v0 (x) is an arbitrary function,

while the boundary conditions at x = 0 and x = I are supplied by the nature

of the devices, that is,

I v(0,t) =-Roi(Ot), t > 0 , (3)

C0  {(-,t) = i(2,t), t > 0 . (4)

Here R0 is a constant.

It is convenient to normalize time and distance, obtaining the

normalized variab les

t - x

rc
2

I
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After introducing the adimensional parameters p = r/R 0 and y = cZ/C0, the

corresponding equations for voltage V( ,r) and current I(§,r) become

2

6 v (V) 21=v
2V (l'a), 2 r ('b)

V( ,O) = vo(Yt), t E [0,1] (2'a), I(t,0) =i 0 (2Y), tE [0,1] (2'b)

a (0, -) -PV (o ,-) = 0 (3'a), a2 0,,r) - P a (0, ) = 0

a l')+y avli) = 0 (4a) I(l,-) +YI(l,r)= 0 (
2V (4'a),

The diffusion equation is normally solved by separation of variables.

Considering the current, we seek a general solution of the form I( ,,) =

g(t)h(r). Equation (l'b) is thus equivalent to the two equations

idRg + P g = 03 -- +p 2h = 0
dt 2 dh 2

2
for constant L. Any function of the form (Acosp + Bsinp)e "  I is a

solution of (l'b); the constant u is any of the eigenvalues of the problem,

i.e., any choice which satisfies the boundary value problem (3'b),(4'b).

Specifically, after some obvious algebra, from (3'b) and (4'b) we obtain

the characteristic equation

tgp = _!_. -P (5)

Y+p L Y+P

The infinitely many solutions of (5) occur symmetrically with respect to

0. Therefore we restrict ourselves to p > 0. (A graphical display of the

solution set is given in figure 3). The eigenvalues [Pi : i = 0,1,...}

are indexed so that p0 < ' I < "'.; note that . > (2i-l)/2 for i - 1. As

is well-known, to each p. there corresponds an eigenfunction gi( ) which
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Y+ 0 i T---/2 3rr/2 5n/2 7TT/2

-- "P- - ,k,

z " ; Y + p

Figure 3. Illustration of the solutions of the characteristic equation.

simultaneously satisfies

2 i"

g'.(O) - pgi(O) = O, (3")
:1

gi(1) + Ygi (I) = 0. (4")

Unfortunately, relation (3"), which is equivalent to pg (O) + P 2g (0) =0,

fails to realize the classical Sturm-Liouville condition [10], so that

gi(): i = 1,2,... is not a set of orthogonal functions. However by

defining the "inner product" of functions on [0,1] in the following uncon-

ventional way

((uv) u()v(,)d + u()v(0) (6)

0 00

It is easily shown that the eigenfunctions can be normalized so that

<gi,g = 3ij ,  (7)

where 5i. is the Kronecker symbol. Since (3") applied to the general

expression g(-) = Acosuf + Bsinu. yields A = -(p/h)B, we have:



g = Gi (sinp - - _ cos1ij) (8)

where G. is a constant. We can now project - in the sense of our inner:1

product (6) -the initial condition I(1,0) on the set fgi( ), and obtain

whence the general solution for the current is

CO 2

g= ig.(9)e (9)
i=O

2.2 Analysis of the saturated regime

As mentioned earlier, in the saturated regime starting at t = 0,

capacitor C0 and the line are at voltage V0, and the transistor is modeled

as a current generator with c'irrent value -10. The circuit is modeled as

in figure 4. Therefore, boundary conditions (3) must be replaced by the

-U0 v(gr) I Co

Figure 4. Model of the saturated regime.

new nonhomogeneous conditions

i(Ot) - O.

The current I( ,-) can thus be expressed as

= 0() +



where Ii( ,r) satisfies homogeneous boundary conditions

S Il(O,r) = 0

(3 ')
.- -(l,r) + YI1 (l,r) = 0

n with initial conditions II(§,0) =- while the stationary term IO(m)

satisfies the boundary conditions

Io (o) = -1o

-0 (l) + YIo(l) = 0.

The latter, and equation (l'b), immediately yield

Y
0(§) -- I0 --TL- 1 )

Turning now to Ii(Ir), note that condition (3"') implies R0 = , or

equivalently, p = 0. As a consequence the boundary conditions for the

eigenfunctions Igi ( 2)l become

I gi(0) = 0
g'(l) + Ygi(1) = 0

which are of the Sturm-Liouville type. Indeed, from (8) the eigen-

functions become

g()=2 " (i = 1,2,.) )(I)i )  sin2. sini' "'

S(1it should be noted that the eigenvalue u0 = 0 does not yield a valid

e igenfunct ion.
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and they form an orthonormal set in the conventional sense. The coefficients

I. are therefore expressed as
0 2.

Ii = -( IO(),gi)

(where ( ) denotes the conventional inner product) and

2

Il(gr) = ligi (§)e
i=l

In conclusion

2

A + I - t-  -!) + Z 1igi ()e (10)

We shall refer to the two terms in the right side of ( 10) as the stationary

and transient terms, respectively.

The expression of V(l,T), the voltage at the gate capacitor end of

£ the line, is obtained from I(I,) and the capacitor equation, as
rc 27rce2 10 -i(1 -2T)

r- I 1(1,9)dO V 0I7 + r %

(1, -- vo  +0 rc-?~ l I-- e .(11)

1 (Note the corrective factor rc 2 due to the normalization of time.) From

this, by integrating I(,r) along the line, we obtain

1
V(0,-) = V(l,T) + r) I (-I,)d.

From this expression for V(0,r) we can determine the time 7PO at which

V(O'r) = Vpo, i.e. the time at which the regime changes. Assuming that

Vp /V0 = 0.8, by numerical evaluation we have ascertained that for Y 10 3

at - = 'P the transient term of ( 10) is all but negligible (< 10- 8 . l(,T

Therefore in this range of 'y, we may safely assume

I('PO)- A0 + i

as the initial condition for the current in the ohmic regime.
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2.3 Analysis of the ohmic regime

In this case, the phenomenon is governed by (l'b) (3'b) (4'b) with

initial condition

I(,) = ' Y - '7. (2"b)

This expression is projected on the basis of the eigenfunctions (8)

according to the unconventional rule (6), thereby obtaining

". I = I0 -Y Hi - K.)

where Hi, and Ki (i = 0,1,...) are easily computable functions of the

V parameters .i, p, and y. It follows that

2

I(t,-) = 10 E.-Ki)gi()e + ( 12)

* From (-=-rI) we readily obtain the expression of V(t,,), as follows:

V( ,r) = V (0,7) - r), JI( , r)dl,

0 2..

= -R Y+ Hi Ki)e 9 g (11)dj
=.R 0 1(0'-)-r.1 0 i K= 0

i 0 0

that is,

2

V(i,0+) RI 0  H" Ki)fi(t)e (13)

with
OG.I' (2)

fi(£) = gi (0) + 0 g(')d d '
2.

(cos ui1+ sing)

S(2)It can be shown that the tfi( )] are a set of eigenfunctions of the

general solution of (l'a),(3'a),(4'a).
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3. Discussion and conclusions.

Expressions (11) and (13), which respectively give the voltage V(§,T)

in the saturated and ohmic regimes, are the objective of our analysis.

In any given technology the ratio Y/p = cRo/rC0 is a constant; therefore

only one parameter describes the behavior. Several discharge curves have

been plotted in figure 5, for the values of y - 10 , 10 , 1, 10, 10 , 10

Taking as propagation delay the instant tPR for which V(l,tPR) = V TH 0.2 V0

we have plotted in figure 6 the relation between tPR and y. on a purely

0.8 ,---. . .... "

0.6

0.4- - .......

II I I

0I 
t

-110 -9 8- 7 -6
*10 10 10 10 10 . 10 sec

-2 -l 3
Figure 5. Discharge curves for y = 10",10 ,. 10

The broken lines describe the discharge at
constant current.

10 5

10- -

10 -  
-

10-9

10 "I 0-2 i0-1 1  10 1  0i7 10 04y

Figure 6. The relation between tPR and v.
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qualitative basis, at this point it is interesting to observe the following

-4facts (here we assume that p C 10 y, as in current technology):

A 0(i) For small values of y (roughly, < 10 ), the propagation delay

is practically constant and is determined by the characteristics

of the devices. This is the unchallenged domain of the constant
ON

delay (or synchronous model).

(ii) For larger values of y (roughly, 10 < y < 103 ), the propagation

delay is basically proportional to y (i.e. to the wire length A).

This is the domain of the capacitive model.

(iii) For very large values of y (roughly, y > 10 3), the dependency of

the propagation delay upon y begins to deviate from linearity,

i.e. the effects of the dispersive transmission line begin to be

felt. This is the domain of the diffusion model.

£ On a less qualitative basis, we have examined expression (13) and

evaluated V(t,r) by sumning at first a very large number of terms of the

series in the right side, and next restricting the calculation to the first

term (corresponding to i - 0). Since "0 is very close to 0 and pi > (2i-l)r/2,

as was to be expected the sum of all other terms is negligible with respect

to the first term. Therefore we shall now consider the approximate -but

basically valid - expression

2
= RO O(--T - o-K)fO(g)e (14)

Z Y O + (14)

The time constant of the discharge, in unnormalized time t, has the

expression

- rc)2

b D 2,0

where -we recall -u 0 is the smallest positive solution of equation (5).

If in (5) we expand t& O in Taylor series we obtain
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2i+l Y PO+  t 0  y+p P y+p

whence

tD ROC0( + y+ p)(l +lI+y+O i i (1)
22

Letting ¢(y,p) 4 (y+p) t 1 /(l+y+p), e gives the relative deviation
i=l 

of tD from RoC0 (1 + y + p), which is linear in p and y and gives the delay

in an idealized capacitive model. In this model the dispersive line is

replaced by a single equivalent capacitance of value cl(l + p/y), where

p/y is a constant in any given fabrication technology; indeed C0 (l+y+p)=

C0 + ce(l +p/y). It is therefore of interest to obtain the behavior of 6

as a function of p and y. A set of contour lines of e is plotted in a

logarithmic diagram in figure 7.

Fl o

Synchronous. 
00

• .0001

Figure 7. Contour lines of e(p,y).
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It seems reasonable to try to define in this diagram the regions of

validity of each of the three models: synchronous, capacitive, diffusion.

Specifically, referring to equation (15), we may (somewhat arbitrarily)

define the region of the synchronous model as the one where tD 2ROC0

(that is, the time constant is at most twice that due to the devices alone);

by an equally arbitrary criterion, we may define the region of the

capacitive model as the one where e S 1 (a deviation which at most cor-

responds to doubling the propagation delay). This region is shown unshaded

in figure 7. In the same diagram each technology is represented by a

,* straight line of slope +1, since - as we noted - in any given technology

= p (K1 , a constant). Current MOS technology is characterized by the

following parameter values:

Feature width (k) = 2.5 4m

Field oxide thickness = I pm

Gate oxide thickness = 600 A

Aluminum thickness = I Pm

Power supply voltage = 5 V

We assume that 2X and 3% be, respectively, the channel length of transistors

and the width of aluminum wires; in addition the minimum channel width is

chosen 4% [ 1]. Recalling that the resistivity of aluminum is 0.28x10
7

that the dielectric constant of SiO 2 is 0.46 X10- 10 F/m, and that the

electron mobility in Si is about 0.8x10 " I m 2/Vsec (we refer here to the

n-channel portion of CMDS), we obtain the following values (see [11 [111):

10  0.98 mA, R0 = 4.05X10 3, C0 = 4. 12X10 "- pF

r = 3.78X10 3 -/m, c = 3.46x10 10 F/m
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-4whence p/y = rC0/cR0  1.10xlO -4 . The corresponding straight-line is shown

5. in figure 7. In addition assuming a maximum chip width of 10 m, we have

y . 84. The corresponding point is also shown in figure 7.

In a scaled-down technology of the foreseeable future, not all

po parameters are likely to be changcd according to a fixed ratio. Indeed

it appears that "feature size", gate oxide thickness, and power supply will

be scaled down, while there is a strong interest in maintaining the thick-

nesses of both aluminum and field oxide. Therefore a reasonable set of

parameters of a future scaled-down technology will be

Feature width = 0.5 Pm

Field oxide thickness = 1 4m

Gate oxide thickness = 150

Aluminum thickness = 1 pm

Power supply voltage = 3 V

I Correspondingly we obtain: 10 = 1.4 mA, R= 1. 69x 103 2, C0 = 6.5x 10-3 pF,

4 -11 -3
r = 1.89X 10 2/m, c = 6.93X 10 F/m, whence p/y = 0.992X 10 . Moreover,

2
assuming a maximum chip width of 50 m, we obtain ymax : 5.65 X10 . The

corresponding curve and point are also plotted in figure 7.

The conclusion we extract from the preceding analysis is that not only

the current but also the projected MOS-FET VLSI technologies fall in the

domains of either the synchronous or the capacitive models. In the latter

propagation delay is proportional to the length of the wires. Note, how-

ever, that this propagation delay is computed in the hypothesis that both

the driving and the driven transistors be standard (i.e., of minimum size).

However, by raising the channel width of the driving transistor, the

current 10 increases and tPR decreases. Indeed - as suggested by Carver-

Mead [ i] and Thompson [3 ] - if the channel width is proportional to the

capacitive load for all transistors, one approaches constant propagation

time and, presumably, current density becomes the limiting factor.p
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It must be noted, however, that projected future technology may reach

the (conventional) boundary of the capacitive model region. Beyond this

boundary, a possible design philosophy - as suggested by Chazelle-Monier

[4] - is to introduce repeaters on long wires in order to achieve delay

proportional to the wire length. Note, however, that in this case we can

no longer avail ourselves of channel width control. Another alternative,

entirely in the realm of speculation, could be the development of integrated

nondispersive transmission lines, where speed of light considerations are

the controlling phenomena.

b

I
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